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We analyze some cases for which the Pollak-Grabert-Hanggi theory on the
activated rate processes for generalized Langevin dynamics exhibits unexplained
disagreements with numerical results. First we analyze carefully the PGH theory
and we show that a kind of Markovian hypothesis implicitly made in the
reasoning is sometimes violated. Then we propose modifications of the original
theory in order to take into account the possible effects caused by this violation,
and we compare the corrected results with simulations.
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1. INTRODUCTION

Since the famous Kramers's paper(1) on the escape rate of a brownian par-
ticle from a potential well, and his calculation of the two limiting formulas
for the weak and strong friction cases, a lot of work has been made to
provide an unique expression able to describe properly the whole range of
friction, and in particular the turnover region where the two curves of
Kramers join. In the same time, the extension of the Kramers theory to
more complicated brownian dynamics like the Generalized Langevin
dynamics, and the calculation of rate reaction in these cases were also a
great challenge.(2)

Among the numerous contributions concerning these questions, the
paper of Pollak, Grabert and Hanggi(4) (initiated by ref. 3) is without
doubt of primordial importance, because this theory (named PGH theory
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in the following)—based on first developments in ref. 5—was the first to be
able to give a global answer to the turnover problems, relatively indepen-
dent from the friction regime as well as from the friction kernel type.
Moreover, the validity of the calculations is in this theory can be controlled
through non-trivial but easy to evaluate quantities.

Afterwards, this theory has been intensively studied and numerically
tested (see refs. 6, 7 and other references in ref. 8), and it appeared that
some situations were not well accounted for by the original theory. For
most of them, the failure of the PGH theory to produce the correct rate has
been well understood: "extreme" dynamics implying extremely long ther-
malisation time in the bottom of the well, non negligible anharmonic
corrections near the saddle, for instance. And for many of them,
improvements were proposed.

For instance, in a recent paper,(8) Reese and Tucker analyse certain
failure of the PGH theory, and propose an improvement called curvilinear
PGH theory (or cPGH) which improves the approximation inherent in
PGH and broadens its applicability. But they compared their new formulas
with very well controlled numerical simulations, and noted that despite this
accuracy, some cases still showed some discrepancies, while all the pertur-
bation parameter were small enough; moreover they pointed out that this
phenomenon was already present in the original PGH paper, because the
comparison with the numerics of Straub et al.(9) they made showed two
cases of unexplained inadequacy.

In this paper, we propose an explanation for this phenomenon, which
is generally encountered in situations for which the static friction is weak
and the correlation time of the friction kernel is important. After a rapid
recall of the PGH theory (we have kept the notations used in the original
paper(4) for clarity), we discuss in detail some points and underscore
certain subjacent hypothesis implicitly made by PGH. Among other things,
we point out that the PGH theory is "markovian" in a certain sense.
Underlying that, in some rare cases, these hypothesis are violated, we
propose a slight modification of the theory, which is in principle more
suitable to describe properly these cases.

2. THE PGH THEORY

We are interested in the rate at which a particle of mass m, mobile
in one dimension escapes from a metastable potential well. Let x ( t ) denote
the position of the particle. The main features of the potential V(x) are the
height V+ of the barrier, the curvatures at the bottom, mw2

o and at the
saddle point — mw+2 (cf. Fig. 1). The particle is in contact with a thermal
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Fig. 1. General form of the potential and related quantities.

bath at a temperature kBT« V+ via a Generalized Langevin dynamics

After a transient, which is negligible if the memory kernel is not too
extended, we know that the survival probability decreases proportionnaly
to exp( — kt). By definition, the reaction rate is the parameter k. Our aim
is the calculation of its value given the expression of V(x), the temperature
and the memory function y(t).

2.1. Zwanzig's Hamiltonian

The PGH theory begins with a description of the stochastic dynamics
of the generalized Langevin equation (GLE) using a hamiltonian for-
malism. As shown by Zwanzig,(10) the dynamics of x can be represented by
a bilinear coupling with a number N -> oo of oscillators qi through the
Hamiltonian

where the parameters ( m i , w i ,Ci) must be chosen such that



736 Farago and Peyrard

2.2. Change of Coordinates: Saddle Eigenmodes

Assuming that the potential V(x) is locally inverted parabolic near the
saddle, it can be written

where V 1 ( x ) is at least cubic near zero. Then it is convenient to separate
the quadratic part of H and write it as

where Hq is quadratic in the coordinates (x,q i ).
Following ref. 4, the next step is to diagonalise the quadratic part Hq

using an orthogonal change of the coordinates (x, qi) -> (p, yi) (this opera-
tion preserves the signature of the quadratic form, so that one, and only
one, unstable mode p corresponds to the unique unstable coordinate x). In
these coordinates, Hq becomes

As x is a linear combination of the new coordinates, it can a priori be
written as

Pollak et al. showed that, in the limit N-> oo the quantities of the
problem which are actually relevant can be expressed in terms of the initial
characteristics of the GLE (1). For instance, A* becomes the Grote-Hynes
frequency given by the implicit relation

(y(s) being the Laplace transform of y(t)). Likewise, u00, which is the
weight of the unstable normal mode in x, becomes in the continuum limit

What is the interest of such a transformation? In the vanishing e limit,
x and p are very similar. Therefore, when x goes from the reactant region
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x < 0 towards the product region x > 0, the eigenmode p evolves from p < 0
to p > 0. However, there is a noticeable difference between these two
descriptions, because the future behaviour of a particle at the saddle
depends very much on the state of the thermal coordinates qi and different
cases can be observed: sharp crossing, slow diffusion, local oscillations due
to a locally trapping effective potential, etc. But for the p mode, the vicinity
of the separatrix p = 0 is a domain where p is decoupled from the yi

because V1 vanishes near the saddle. Then, Pollak et al. noticed that, if the
unstable mode approaches the saddle at p < 0 with a velocity oriented
towards the exit ( p > 0 ) , the trajectory becomes ballistic and the crossing
is almost certain. The re-crossings are then forbidden, which is the great
advantage of this description.

2.3. Statistics of the Unstable Mode

To obtain the reaction rate, one has to know the statistical properties
of the p mode. It is convenient to follow the approach introduced by
Kramers ( 1 ) and to consider a fictitious stationary regime obtained by
injecting particles at the bottom of the well at constant flow that matches
their escape rate. In this regime, the number N of particles remaining in
the metastable region is constant, as well as the distribution function of the
unstable mode Pmeta(p,p), which is defined such that, in the metastable
region, the proportion of particles being at position p ± dp/2 and moving
with a velocity p±dp/2 is dN/N = Pmeta(p, p) dp dp. With this function,
the reaction rate is simply

Note that this formula already takes into account the absence of re-crossings:
Pmeta(0, p < 0) = 0. We can rewrite it as

where f ( E ) dE dt, defined for E>0, can be interpreted as the likelihood for
finding the particle between t and t + dt at the saddle with an unstable
mode energy (defined a priori by E = p2/2 — l + 2 p 2 / 2 ) between E and
E + dE. PGH define also the analogous quantity for the negative energies:
for E<0, f ( E ) d E dt is the likelihood for finding the particle at a turning
point (p = 0) of his trajectory with (potential) energy E; one can see that
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here f(E) = Pmeta(— v/ — 2E/ l + , p = 0). This extension to negative energies
will be explained in the following.

This description of the p process using energy variables is quite natural
because the rate limiting process is the energy diffusion from stables modes
yi to the unstable one p: as soon as the p mode reaches the saddle energy,
the reaction occurs with probability one. So, one has to evaluate this f ( E )
to obtain the rate k. To do that, PGH introduce a master equation, which
characterizes the stationarity of the process p(t), and also assume the
asymptotic form of that distribution. They propose the master equation

where P ( E | E ' ) dE is defined as "the conditional probability that a system
leaving the barrier region with energy E' in the p mode returns to the
barrier with an energy between E and E + dE." In the same time they give
the following limiting condition: when one considers particles located deep
inside the well, having energies notably less than —kBT, f(E) must reach
in that region its equilibrium value, i.e., the value that would be implied by
an infinitely deep well. This value recalled by PGH is

2.4. Solution for f(E) and Calculation of the Reaction Rate

Writing (4), amounts to substituting an unknown quantity for another
one, so we still have to precise P(E \ E') at least for energies near the
saddle energy (far from the saddle f ( E ) will be imposed by the limiting
condition feq, so that it is sufficient to determine the conditional probability
in the vicinity of the saddle region). This calculation, based on the micro-
canonical structure of the description—trajectories are solutions of the
equations derived from the Zwanzig Hamiltonian—leads to(4)

During an oscillation in the metastable well, the typical behaviour of the
unstable mode is to lose a characteristic energy AE (always positive) given
by (8)



In this expression, K(s) is

Moreover, g(s) is given by

i.e., we consider a trajectory starting at p = 0 with no initial velocity at time
t-> — oo and coming back to the same state at t -> + oo. Let us mention
that it corresponds to a motion in an effective potential Q(p) =
V1(uo op/v/m) — l+ 2p2 /2 with shape generally similar to that of V(x) and a
barrier height denoted by Q+.

Once the kernel P(E \ E') is known one solves equation (4) taking
into account the limiting condition f ( E ) - > f e q ( E ) at E-> — oo using the
Wiener-Hopf method.(5) This gives the analytical PGH formula for the rate

where

3. ABOUT THE MASTER EQUATION

In order to go beyond the PGH theory, it is necessary to examine in
details its underlying assumptions; in particular, we think that the physical
interpretation of Eq. (4) is not as obvious as it can appear.

First, one notes that the conditional probability P(E \ E') is related
to a single isolated event, without any reference to the duration of oscilla-
tion, while a naive idea of stationarity should imply P(E', t + t' \ E, t) =
P(E', t'\ E, 0) instead of this absence of time in the propagator.

Long-Time Bath Correlations in PGH Theory 739

with

where pas(t) is the asymptotic solution of
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Second, much more questionable is the affirmation in ref. 4 that
P(E | E') obeys the detailed balance equation

Indeed, the situation which is considered is essentially out of equilibrium,
consequently not invariant by time reversal; therefore there is no reason
a priori for P(E | E') to follow the detailed balance equation, which is a
statistical signature of the time-reversal symmetry.

To precise these two points of the PGH theory, it is useful to explain
in details the underline methodology employed by PGH to extract relevant
informations from the process p(t), in spite of the complexity of its
dynamics, by examining the statistics of the eigenmode p. When, at time
t = 0, a particle is placed in the bottom of the well, it is thermalised very
quickly in comparison with the mean escape time k-1; then the trajectory
of p ( t ) is confined in the p<0 region during a very long time (with respect
to the characteristic times of the dynamics in the well), and exhibits a large
number of turning points inside the well. Let us denote by tn the times at
which the velocity p vanishes and changes its sign. At these points, the
(potential) energy in the unstable mode is En= — l /2 l + 2 p( t n ) 2 . Finally the
particle reaches the saddle p = 0 at a time tf with an energy Ef>0 and the
reaction occurs. We can then extract from the whole continuous process
p(t) a discrete series of energies {En= — 1 / 2 l + 2 p ( t n ) 2 } n constructed with all
the inner turning points of the trajectory considered plus the energy at the
saddle (Fig. 2). This sequence of energies is finite but very long in the
kBT« V+ limit. This is also a random process, and it is stationary as well
as p(t): after a negligible transient, the distribution function R(E) of the En

Fig. 2. The turning points of the unstable mode p define a discrete sequence of energies.
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is independent of time (R(E) dE is the probability that, given an "event"—
that is, a turning-point or an arrival at the saddle—its energy is comprised
in the domain [E, E + d E ] ; notice that s R(E) dE= 1 on [ - V+, oo]). On
the other hand, it is clear that there are correlations between successive
events: the ( n + l ) t h event is strongly dependent on the nth one. As a
result, the stationarity of the process is formally transcribed by

where

In this master equation, the probability P(E | E') is now naturally defined
without any reference to the time, because it is simply the propagator from
a turning point to the next event of the process {En}. Notice that this
equation is very close to (4), except for the number R, which is the nor-
malisation imposed by the fact that all the particles that remain at a certain
time come necessarily from the metastable region of the potential; notice
that this normalisation is different from the one of R(E) over the full range
[ — V+, oo ] of the energies accessible to the random sequence which is con-
sidered. If the well is deep, R is close to 1 and it is tempting to make this
approximation and recover (4). Nevertheless, doing so, this amounts to
imposing the unwanted result soo0 R(E) dE = 0. Then, to recover (4), we are
at the same time compelled to make the integral of R(E) divergent by
throwing the left limit of the integral toward — oo (R(E) itself diverges
at — oo). We see then that the change V+ -> oo is not only useful for apply-
ing simply the Wiener-Hopf technique, but is also mandatory to obtain a
non-zero solution of (4). To conclude this paragraph, let us note that with
this prescription, we would recover the same equation as PGH, because it
is easy to verify that R(E) and f(E) are proportional.

Pollak et al. give an astute evaluation of the probability P(E |E'),
which takes advantage of the microcanonical structure of the description,
providing that the coupling between p and the stable modes yi would be
small enough (that is e < < l ) : they consider a typical oscillation of the
mode p, which begins near the saddle and evaluate the energy exchange
between p and the yi during this time. This transfer depends on the initial
conditions ( y i ( 0 ) , yi(0)) of all the stable modes, which are assumed to be
random variables: one describes the initial conditions canonically, whereas
the dynamics that follows is studied from the microcanonical point of view.



As a result, the energetic transfer is also a random variable, function of the
( y i ( 0 ) , y i ( 0 ) ) .

Now, one has to give an ansatz for the distribution function of the
( y i ( 0 ) , y i ( 0 ) ) , knowing the unstable mode energy. Pollak et al. choose
an equilibrium distribution function independent of the p energy, i.e.,
p({yi ,yi})ac IIiexp(-B(y2i+ l2i)/2). This means implicitly that the
calculation neglects the retroaction of p back on the thermalisation bath.
Consequently, from the statistical point of view, the future behaviour of
p depends only on the initial turning point energy E1 , and not on the
previous ones: in other words, the {Ei} process is supposed here to be
markovian. This "weak" equilibrium hypothesis has a second consequence,
which gives an answer to the second question we raised above: P(E2 | E1)
must now obey the detailed balance equation. Indeed, at any turning point,
the whole system has kept no memory of the past, particularly no remem-
brance of the out-of-equilibrium situation: locally, i.e., from a turning point
to another one, the statistical behaviour of the unstable mode is supposed
to be the same as in an equilibrium context. Then it can be noticed that all
the non-equilibrium characteristics are entirely contained in the structure of
the master equation (through the integration restricted to the domain
E<0).

4. MODIFIED PGH THEORY FOR STRONG CORRELATIONS

This markovian hypothesis, although never explicited in the original
PGH paper, is a priori a very good approximation, and the numerical
simulations showed often an excellent agreement in a vast range of
parameters.(4) But we shall see that a violation of this assumption is
possible for some situations that we shall identify, and that the problems
previously noted by Reese and Tucker (8) correspond precisely to these
situations.

4.1. Bath Correlation Time

Let us imagine that at t = 0 the unstable mode undergoes a turning
point with energy E1 near the saddle (E1~ —kBT). At this time the stable
modes y, are supposed to have the initial conditions { y i ( 0 ) , y i ( 0 ) } . At a
certain time later ?, which actually is not infinite as the asymptotic trajec-
tory Pas would imply (because E1 is not strictly zero), the p mode under-
goes a second turning point. During this time interval, the yi modes
oscillated in a parabolic well with frequency li, each weakly perturbed
by p. If their oscillation frequency is large in comparison with 1/t , the yi

have made many oscillations, and therefore a little relative inaccuracy on
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t leads to a enormous change of (yi(t), yi(t)); for such modes, we expect
that correlations between their motion and that of p cannot grow. On the
other hand, if li is of the same order of magnitude as, or smaller than, 1/t,
the stable mode partly keeps a remembrance of the initial energy after an
oscillation; the variables li(t) and E1 are then significantly correlated with
respect to the distribution of the {yi(0), yi-(0)}.

As a result, if a large proportion of the stable modes belongs to the
first case (li» 1/t), we have a decorrelated situation for which the PGH
ansatz is very well adapted. But, if most of the yi are in the li < 1/t domain,
then some discrepancies would possibly be observed. We expect then that
the relevant quantity governing the corrections is related to the proportion
of low frequency modes in the bath.

4.2. Non Markovian Master Equation

These correlations act on the function P(E2 |E1). It would be nice if
we could calculate this kernel, taking into account explicitly their effect by
a self-consistent choice of the stable modes distribution. This task is
probably difficult to achieve, and we adopted another line of reasoning.

The PGH master equation is not the unique one adapted to express
the stationarity of the process. We can also imagine a more complicated
form, which explicits a possible memory: denoting by R(En, En-1,..., E1)
the likelihood for observing the turning points E1, E2,..., En in succession,
the stationarity can also be written

with the normalisation constant Rn = s°_v+ d E n . . . d E 1 R(En,..., E1) (con-
cerning this number, the same remark as for R above, is also valid here).
With this formal equation, we express directly the possible correlations; for
instance if we know that P(En | En-1,..., E1) depends in fact only on the
first two energies En and E n - 1 , we can claim that the PGH is valid in that
case. Of course, we first tried the simplest generalisation

which is well suitable for correlations inefficient beyond two turning points.
This equation can also be expressed as
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which turns it into an implicit equation for the one-variable function R(E).
The probability P (E1 | E0) is formally the same as the kernel in the one-
step master equation of PGH (Eq. (4)). Therefore, a good approximation
is obtained by choosing for P(E 1 | E0) the PGH formula (5). Moreover, the
limiting condition for R(E) is the same as before:

There is now a new unknown quantity P(E2 | E1, E0) that we have
calculated following the same method as PGH (cf. Appendix). Conse-
quently, we have the same restrictions concerning the validity of the for-
mula: for instance, we must have 2AE« Q+ in principle. Moreover, we
emphasize that this kernel is still calculated in an equilibrium context, but
nevertheless we claim that the result is an improvement of the theory
because more informations concerning both the correlations and the out-
of-equilibrium situation are given. The result for P(E2 | E1, E0) is

and shows an additional quantity C:

which is in fact a symmetric function of E0 and E1 via t0 and t1, which are
the oscillation times from E0 to E1 and from E1 to E2 respectively. We can
remark that the c ->0 limit corresponds to the PGH theory, so that the
value of C quantifies the role of the correlations. Moreover, in that function
we recover quantitatively the qualitative arguments that we pointed out in
the preceding paragraph: its magnitude near the saddle is controlled by the
relative proportion of the low frequency modes (in comparison with 1/t).

But if one looks carefully at c, one sees that just at the saddle E = 0,
the oscillation time is infinite, leading to C = 0 because it contains the
integral over s of a fast oscillating terms. Then it is tempting to make the
approximation c = 0, and retrieve the PGH theory. But one should not to
do so, because, as the saddle is an unstable equilibrium, the oscillation time
varies very much with the initial energy, and falls very quickly down to
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rather small values. More precisely, we can write this oscillation time to

(function of the initial energy E0 of the mode) as

where E* is the characteristic energy so that the inverted parabolic
approximation is no longer valid for energies below it, and tp is the charac-
teristic time for oscillations in the bottom of the well of Q(p). So, t0

diverges logarithmically, then despite £ = 0 exactly at the saddle, it can
possibly reach substantial values for very small values of the initial energy
(small in comparison with kBT). This phenomenon can also be viewed
noticing that for (E0 , E1) both very small we have

where the exponent v can be much less than one. Finally we expect £ to be
negative near the saddle, due to the positive slope of g(s) R[K(is)] at s = 0.

These remarks are illustrated on the Fig. 3, for different cases (the
justification of the choice of these particular cases is discussed below) and

Fig. 3. Shape of C(E1, E0) for several lines of the Table I in PGH's paper. For each line one
plots the function for several values of E0: BE0= -0.5, —1.0, -1.5 correspond respectively to
the full line, dashed, and dash-dotted lines.
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for the model considered by PGH in their paper (Fig. 6 below is analogous
for Reese and Tucker's model). One notes also that in the saddle region
E0 , E 1 ~ k B T , C can be considered raisonnably as constant (except the
initial and negligible transient). Assuming the irrelevance of the precise
value of C far from the saddle, it led us to solve the master equation (9)
with a constant C.

4.3. Numerical Resolution of the Master Equation and Results

Knowing P ( E 2 | E 1 ,E0) from Eq. (10), the master equation (9) is
completely defined. As discussed previously, it is reasonable to consider £
as a constant which already brings a significant simplification. However,
this approximation is not sufficient to allow us to solve Eq. (9) analytically
because the integral equation is no longer of the Wiener-Hopf type. The
kernel is indeed now

and is clearly not of the form K(E2 — E0). So we solved it numerically by
successive iterations. This procedure gives good numerical convergence if
the kernel is first symmetrised and if the asymptotic divergence of the solu-
tion is expressed apart. Figure 4 shows how the prefactor A of the reaction
rate in Eq. (7) is modified with increasing |C|. The combined role of
correlations and out of equilibrium situation that bias the energy distri-
bution toward lower values tend to reduce the mean energy exchange with
the bath when successive turning points are considered (AE replaced by
AEeff = AE( 1 + 2 c ) . The leading consequence is a decrease of reaction rate as
one could qualitatively retrieve from the PGH expression with a reduced AE.

With these results, we are now able to analyse the possible role
played by the correlations in the examples studied in the papers of refs. 4
and 8.
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Fig. 4. Variation of the prefactor A ( B A E ) with respect to c;C:=0 (plain), C= —0.1 (dashed),
C= -0.2 (dotted), C= -0.3 (dash-dotted), C= -0.4 (stars), C= -0.5 (circles).

4.3.1. Numerical Results for the PGH Examples. The kernel con-
sidered by these authors is the exponential y(t) = a-1 exp( — t/ay). This
function corresponds to a density of modes(8)

The potential used was piecewise parabolic and imposes the function g ( s ) :

where l2 o= u 2 o o ( w 2 0 + w+2) — l+2 and l 0 t p = n + arc cos[(l2o — l+2)/(l20 + l+ 2)]
(this example was previously numerically studied by Straub et al.(9)).

Among the 36 different cases gathered in the Table I of the PGH
paper (p. 4083), two of them are of particular interest because they present
discrepancies between the theoretical and numerical results which are not
at all expected. They are the cases labeled 33 and 34. Indeed the perturba-
tion parameter e is very small in these cases (4.2 10 -3 and 7.8 10 - 4 respec-
tively), and moreover the energy transfer is small enough in comparison
with Q+ (0.6 and 0.1 to be compared with 20). Consequently these dis-
crepancies were originally ascribed by Pollak et al. to mistakes in the
numerics.

But Reese and Tucker also met such failures in an other model, for
situations very similar to the 33 and 34th cases of PGH (and first
suggested that they were probably not due to numerical inaccuracies): all



of them correspond to a weak static friction s y ( t ) d t and a long persistence
time ay of the kernel. We show now that the explanation of these failures
lies in the existence of non-negligible correlations in the sequence { E i } :

For the line 33, the PGH theory overestimates the rate with a factor
between 1.17 and 1.59. On the other hand, from Fig. 3, we see that the
appropriate value for c is ~ —0.2 for this case. We find a correction factor
A c = 0 /A c = _0.2 = 1.19, which is in the proper range [ 1.1754, 1.5909] though
close to the minimum.

The case 34 is not so accurate: the overestimation factor of PGH is
large, between [1.45,1.85]. But the corresponding £ is only —0.05 much
too less to correct the rate enough, giving a factor 1.07 only. Why is it so?
Let us remember the hypothesis of quite short correlations (not extended
beyond two correlations) that we made and let us look at the characteristic
times of the kernels in both cases: for line 33, ay = 2.5/w+, and the typical
oscillation time is I/l+ ~ I/w+; here our hypothesis is rather well verified.
But the case 34 corresponds to a time extension of y(t) ten times larger,
for a same geometry. It is then clear now why the result based on
P(E2 | E1, E0) only is here so inaccurate: we would need much more than
two steps of correlations to retrieve the overestimation factor quantita-
tively.

To confirm this analysis, we calculated the probability P(E3 | E2,
e1, E0) following the same procedure as for P(E2 | E1, E0), which is valid
near the saddle and for energy transfers such that 3zl£«g* (this is very
well fulfilled in this case 34 where AE~Q.\ and g*~20). The result (to
first order in £) is

with £ = £[(/0 + 2fi + /2)/2] ~£[2?]. This result is interesting, because it
shows that this probability is not necessarily of second order in £ with
respect to the preceding one, but gives instead a new parameter £, which
is not necessarily negligible in comparison with £. And indeed, in the case
34 for instance, the function £ ( f ) (cf. Eq. ( 1 1 ) and Fig. 5) tends very very
slowly to zero and stays for a very long time around —0.05. For a particle
starting at the energy E= —kBT/2, the oscillation time t is approximately
(1 + ln( 160))/A*~6//l* and one verifies on Fig. 5 that £ = £(?)«£ = £(2?) «
£(3?) x —0.05. It confirms that in that case the correlations extend very far
(at least half a dozen turning points or so). As a result, if we would like to
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Fig. 5. Shape of £ ( / ) for line 34 of Table I in PGH.

calculate the rate to a good accuracy here, we would have to solve a master
equation with a great number of correlation steps explicitly expressed,
a complicated task indeed. Nevertheless one still remarks that the 3-steps
correlation theory induces a change of the mean energy transfer AE-*
(1 + 2(f + 0) x AE, which shows that this second correction is again in the
right direction (this qualitative argument is however quite rough, because
the width of the gaussian in P is not renormalised; in particular, it forbids
an approximate resolution of the master equation based on such an
ansatz).

So, it is interesting to note that C ~C(t) is not the right quantity to
characterise the effects of correlations, but rather the sum

The cases 33 and 34 correspond to two different situations where this sum
is not negligible: in one case, the friction is weak and the correlation time
is not too extended, leading to a substantial value of if made by only a few
terms. In the other case, the friction is stronger, which reduces a priori the
strength of correlations (and then each C ( n t ) ) , but these are much further
extended, implying a significant value of f, despite the little individual
contribution of each term of the sum.

We have analysed here some cases for which the PGH theory fails. It
is suitable to discuss also the reason why it does work in many cases. For
instance it can be seen from Fig. 3 that for the lines 1 and 2 of Table I in
PGH, the value of C is minute; according to our approach we expect a
good validity of the PGH theory. This is indeed what they observed.
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The common feature of the cases 3 and 7 is the great mean energy loss
bAE: 13.98 and 17.22 respectively. In these cases, the Grote-Hynes formula
k = L+ w 0 / ( 2 n w + ) exp(— BV+) gives the correct result (as well as the PGH
formula for A ~ 1), because a particle starting from the top of the barrier
transfers its energy very efficiently to the yi in the bottom. Then we do not
expect the correlations between two turning points occurring in the neigh-
bourhood of the saddle to be present (but it would be perhaps possible to
imagine "strange" memory kernels for which we could have both (BAE>> 1
and efficient correlations nevertheless). Anyway, the correction presented
here is not appropriate in these cases, because the approximation we used
for the conditional probability imposes a small AE.

Lines 14 and 15 in PGH table give a £ completely negligible ( ~ 10 -3),
due to the fact that the oscillation time near the saddle t0 is dominated by
the oscillation time in the bottom, tpac 1/A0, which is huge. But there are
noticeable discrepancies between simulation and theory, with a prediction
too slow in comparison with the experiment. As a result, these inaccuracies
are not an evidence for the presence of correlations; the explanation lies
probably rather in the neglected anharmonicity of the potential (the barrier
are in these cases almost "cusp-shaped").

We have not considered the other lines because the remaining cases
have a renormalised barrier height Q+ very different from the original
barrier height V+, and Reese and Tucker showed that the trajectory pas(t)
is a bad ansatz for the effective typical asymptotic trajectory and in these
cases we should use their theory cPGH to calculate g(s) properly.

4.3.2, Numerical Results from Reese and Tucker's Example. In
ref. 8, Reese and Tucker compared their theory with numerical simulations
made with a q3 potential and with the same exponential kernel as PGH.
For this geometry

Moreover, the oscillation time in the renormalised potential Q(p) is an
elliptic integral, with, as before, a logarithmically divergent behaviour at
the saddle:

(we recall that E is the energy at the onset of the oscillation, with the con-
vention that the saddle is at E = 0). The calculation of c is made with these
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Fig. 6. Shape of c( E1 ,E 0 ) for the four first lines of the Table I in the Reese and Tucker's
paper.(8) For each line one plots the function for several values of E0: BEo= -0.5, - 1.0, — 1.5
correspond respectively to the full line, dashed, and dash-dotted lines.

functions, and the results are plotted in Fig. 6 (we have not considered the
cases y > 7, because in these situations the renormalised barrier height Q+

is less than kBT, and we should imperatively take into account the cPGH
corrections). |C| is clearly always greater than 0.15, a piece of evidence for
existing correlations.

The four first lines of the Table I in the R&T paper show discrepancies
between the PGH theory and the simulations, characterised by the factors
2, 1.55, 1.29, 1.12 respectively. The resolution of the 2-steps master equation
with the corresponding C's gives correction factors 1.6, 1.27, 1.18, 1.07,
which are better, but quantitatively not very satisfactorily (we should have
1 instead!). The explanation lies as well as before in the fact that the exten-
sion of y(t) is here chosen to be of order 10, whereas the characteristic
oscillation lasts about n: this involves efficient correlations till probably the
fourth step in the sequence. The other lines were not investigated because
for these cases, the barrier height is strongly renormalised, what imposes
a priori to take into account the curvilinear corrections calculated by Reese
and Tucker.



5. CONCLUSION

We showed that the few situations for which the PGH theory seems
not to hold and predicts incorrect rates contradict the implicit hypothesis
made by Pollak et al:. we can call it "weak markovian" hypothesis because
the calculation of P( E | E') assuming the equilibrium of the bath plus the
unstable mode is equivalent to assume that the discrete sequence of turning
point energies is markovian. Although this condition is almost always
fulfilled, the discrepancies observed, which correspond to a small static fric-
tion but large time extension of the friction kernel (with respect to a mean
duration of an oscillation beginning in the vicinity of the saddle, say with
energy ~ — kBT) exhibits precisely such anomalous long correlations.

We proposed a slight modification of the PGH theory in order to treat
properly these cases, by substituting to the PGH master equation another
equation, formally equivalent but including explicitly more information
about the correlations (and consequently more complicated).

The numerical resolution of this new equation becomes very arduous
when the required number of correlations increases and we were able to
calculate the correction implied by only one additional correlation step.
Unfortunately, we noticed that the correction induced by this 2-steps
theory is generally quite smaller than the observed deviations, due to the
fact that substantial deviations are obtained with intensive correlations, for
which the 2-steps approximation is generally not sufficient. Furthermore,
we noticed that some "extreme" situations correspond to locally weak
correlations extending over a great amount of turning points. Such ones
are naturally described by master equations involving a large number of
successive steps, and are therefore almost impossible to treat. But the
physical relevance of such extraordinary bath correlation times is question-
able, insofar as usually the memory of the bath does not exceed too much
the typical times of the dynamics of the brownian particle.

On the other hand, the situations for which the characteristic times of
the potential V(x) and that of the memory kernel are of the same order,
leading to possible non-markovian behaviour, are certainly of physical
interest and could be encountered in biological environments for which
reactions sometimes occur on small sites located on large biological
molecules or walls, who act on the dynamics of the reaction like coloured
noise with a time extension at most of the same order than the charac-
teristic time of the particle in its well.

APPENDIX: CALCULATION OF P(E2 | E1 , E0) IN THE LIMIT e « 1

In the following, we assume that the condition e « 1 is fulfilled.
We want to calculate the conditional probability, knowing that at

t = 0 the unstable mode p undergoes a turning point with energy E0 and
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that the one just afterwards occurs with an energy E1 (after a time denoted
t0 but not imposed), that the third event occur with energy E2 (E2<0
corresponds to a turning point, E2 > 0 corresponds to a crossing over). The
time of this latter is denoted t0 + t1. Let us stress that these times does not
represent any constraint in the probability, the only one being that the
three events occur successively.

What is the dynamics of the degrees of freedom in our system? The
description is microcanonical, so that the evolution equations derive simply
from the Zwanzig's Hamiltonian (2):

with

As uio/u00 is of order v / e / N , at the lower order we have

So, the dynamical equations are

We notice that Eq. (12) for p is decoupled from the stable modes and
corresponds to the free oscillation of p in the effective potential Q(p)
already mentioned. We call p(E0, t) the solution for a mode starting at
t= 0 with a zero velocity at the point p0 defined by E0= — l/2A+2p2

0. We
stress that this energy E0 is not the one associated with the conserved
quantity 1 /2p 2 + Q(p), but the part of the global hamiltonian ,W related to
the unstable mode: Ep= 1 /2p 2— l/2l +2p2. The duration t0 of the oscillation
is a function of E0. With this notation, the asymptotic trajectory p a s ( t )
defined above corresponds to p(E = 0, t) (the corresponding t0 being here
infinite).
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As, in this approximation, the p mode comes back to its starting point
after an oscillation, it seems that its energy remains unchanged. But (12) is
only used to calculate the trajectory p(t); to get the energy loss of the
mode, we have to solve the equations (13) for the modes yi. They are very
simple (forced oscillators) and we have(4)

In this equations we have defined

Let us also note that the last integrals of (14) and (14) are zero if time t
is the time t0 of the next turning point; moreover, the variation of n i ( E 0 , t0)
with respect to E0 is slow in a large interval around the saddle, so that we
will use its asymptotic value n i ~ n ( E = 0, t = oo) in the following.

At this time t = t0, (14) and (15) can be rewritten in a condensed and
practical manner: if one defines

and
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we have

where U(t) is an orthogonal evolution matrix, block diagonal with the
2x2 matrices

in the diagonal. It verifies the properties U(t0 +t1) = U(t0) U(t1) and
t U ( t ) = U ( t ) - 1  =  U ( - t ) .  W e  h a v e  a l s o  t h e  r e l a t i o n  U ( t )  x ( t ' ) = x ( 2 t  +  t ' ) .

With these notations, the initial conditions of the thermal modes are
simply F(0) and the energy at time t of all these modes Emodes(t) =
Ei(y2i + l2iy2i}/2 is just || Y(t)||2/2. Likewise, we have that 2AE= ||x(t0)||2 =
Ein2i, where AE is the PGH formula (6).

Then, if one considers the norms in Eq. (16), one finds

(This is only a condensed rewriting of Eq. (3.21) in ref. 4). On the other
hand, we know that the entire energy H= Ep + Emodes + V1 is preserved. It
follows that, if the energy of p is E0 at the onset of the oscillation (at / = 0)
and the corresponding energy at the end of the same oscillation is labeled
by E1 (at t = t0), we have

For an oscillation beginning in the very neighbouring of the saddle,
and ending also in that region, the interaction term (with V1) does not con-
tribute; that is the reason why the authors of PGH theory neglected it; we
will also neglect it for clarity (it would correspond to a anharmonicity
correction). We mention that we could in principle handle the calculation
with that term, because in the limit e « 1, it becomes linear with respect
to the yi:

So, at ( = 0, the unstable mode leaves the saddle with the energy E0,
comes back at time t0 with energy E1 given by the expression above. If the
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mode leaves again for a next journey in the depth of the well, it is easy to
see that its energy of second turning point E2 is related to E1 in a similar
way as (17), that is

where t1(E1) is the duration of the second trip. Equation (16) leads to

Let us note that the characteristic energy transfer AE is here the same as
for the first oscillation, which is consistent in the approximations: e « 1
and AE~ constant in the saddle region.

The energy E2 is then a random variable which depends linearly
dependent on the yi(0) and y i(0) assumed to be at the equilibrium at the
initial time, namely l2

i<y2
i(0)> = < y2

i(0)> =KBT and <y i(0)> = <y i (0 )> =
< y i ( 0 ) y i(0)> =0. But these random variables are constrained in the
calculation of the probability over E2 we look for, because we must take
into account the imposed energies E0 and E1. So a particular sample of the
modes (yi(0), yi(0)) (or of the vector y(0)) must fulfill the constraint (17),
which is an information considered as known.

As a result, P(E2 | E1 ,E0) is given by a measure over a subspace of
the entire phase space imposed by these constraints:

with the definitions w0 = E0 — E1 — AE and w1 = E1 — E2- AE1 — x ( — t 1 ) . x ( t 0 ) .
This integral is gaussian and then can be explicitly evaluated; by

means of

we have finally
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where

This c becomes (11) when N-> oo.
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